CITATION

Palmer, W. P. (1986). The chemical knowledge of secondary science teachers in Papua New Guinea Chemistry in the Service of Papua New Guinea, P. Bladon (editor), ($12^{\text {th }}-14^{\text {th }}$ September), pp.167-190.

Abstract

The chemical content knowledge of secondary science teachers is seldom measured directly in developed countries as there are practical, ethical and political problems involved that would be likely to be insuperable.

In Papua New Guinea (PNG), the author assisted in some of the work involved in the second IEA Science Study (SISS), where the PNG education system took part in the scheme which involved twenty-six different countries. The author suggested that the science teachers taking the classes being tested completed the tests themselves. These scripts were returned to be marked in the same way of the student scripts.

The results of the research were significant and can be considered as a start to the fuller and more detailed research which would be necessary to be more confident of the conclusions. However, evidence was produced to indicate that that the knowledge of some experienced science teachers was less than would be considered desirable. The scientific knowledge Goroka diploma holders, whether experienced or more recent, was less as a group than other Grade 10 teachers. There was also evidence that chemistry is an area of difficulty, particularly for Goroka diploma holders. Item analysis of SISS data yielded some inkling of specific problems which national teachers had in their own understanding; it might eventually lead to appropriate solutions being found for these problems.

THE CHEMICAL KNOWLEDGE OF SECONDARY SCIENCE TEACHERS IN PAPUA NEW GUINEA

W. P. Palmer

Introduction

'My revolutionary suggestion is that students [student-teachers] should be sent out not only full of friendly feelings towards their charges, but actually knowing something' (Bantock, 1969). The challenge which faces teacher trainers worldwide is to ensure that the new teachers sent out possess the minimum subject knowledge to enable them to pass on this knowledge to their students. They must have many other skills, but without this minimum subject knowledge they are doomed to failure as teachers.

This same point has been expressed by a number of educationalists in different words: '...it is abundantly clear that no amount of general intellectual skill or mastery over cognitive strategies will overcome lacks in content knowledge' (Schulman, 1974. 'In teaching, knowledge enters into the professional work in a more unique fashion: knowledge is what teaching is about' (Buckman, 1982)

Walsh (1984) complains about the lack of content knowledge of Australian secondary science teachers. He considers that the reason for this lack of knowledge is that science teachers who are expert in one field of science have to teach other science areas in which they are not expert. In Papua New Guinea (PNG), because national teachers are trained to some extent in all areas of science, this particular problem does not arise, though it is a problem for some expatriate teachers. However P.N.G. secondary science curricula do not emphasise content knowledge (Palmer, 1984) in keeping with the deliberate policy of 'containment' (Wilson and Deutrom, 1984), and this causes problems in tertiary education.

In general, at Grade 10 level, students are considered to be about three years behind Grade 10 students in industrialised countries. Goroka Teachers College, which is the main source of secondary teachers in PNG, recruits at Grade 10 level, with graduates normally qualifying after three years, and also at Grade 12 level, with graduates qualifying after a two year course. It is thus obvious that the academic standards of teachers graduating at GTC will be below those accepted in developed countries.

However the question this paper will attempt to answer is this: Is the knowledge of PNG teachers sufficient to enable them to teach science competently in the top classes (Grade 10) of provincial high schools?

Relevant Research

At a recent meeting of teacher educators in Australia, Phillips (1986), in a keynote address, stated that when he was looking for educational research relating to excellence in teaching he found that research findings proved that good teachers mumble and give more badly structured explanations than do unsuccessful teachers, and that teachers who have the most repulsive personalities are more successful than those who are pleasant, and so on. This was greeted with stunned silence. A few moments later he pointed out that the truth was the exact opposite of the research findings quoted. The point made by Phillips, which is being emphasised here too, is that educational research findings are usually unsurprising and often platitudinous. The area of teacher knowledge appears to be under-researched worldwide. For example, the well-known surveys such as Bennett (1976) and Rutter (1979) which look at the effect of teachers/schools on pupils do not include teacher knowledge as a variable. Similarly, the sociological studies looking for causes of inequality between children (Jencks, 1972) do not appear to consider teacher knowledge as a possible factor. One reason for this may be that teachers and teachers' unions do not like researchers investigating the knowledge of teachers (Bruning, 1986), because teachers' apparent lack of knowledge has sometimes been a cause of embarrassment to the profession. Researchers have thus sought less contoversia 1 avenues such as looking at the academic quality of students about to enter teaching, as compared with those considering other careers. The pattern that emerges, with the notable exception of Norway (Rust, 1985), is that those entering teaching as a profession in countries such as USA (Weaver, 1978) and Japan (Inoue, 1975) occupy very
lowly positions in the ranks of all new graduates. This is likely to be true of PNG also, as the entry requirements of those entering teaching through GTC are lower than those required for other faculties of UPNG or the University of Technology, Lae. This is in spite of recent advertisements in the local press which state that 'Papua New Guinea needs many more high school teachers - teachers who are scholarly, skilled and professional. GTC is committed to producing only the best’ (GTC, 1986). Entrance requirements for teaching have however been rising over the last five years, so it is earnestly hoped that more scholarly, skilled and professional teachers are now being produced, but on the whole, those starting teaching in PNG are less academically able than those entering other professions.

An early study by Nisbet (1954) clearly shows that teachers with higher intelligence prior to graduation were more successful in their careers over a twenty year period. There is also a considerable body of research literature on teacher knowledge of certain specialised subject areas such as metrication (Rowsey et al, 1978) and nutrition (Penner and Kolasa, 1983). However, straightforward studies linking teacher knowledge to pupil achievement are rare, partly because they are liable to be misunderstood through over-simplification, and partly because the shadow of 'payment by results' still hovers over the profession.

Within PNG, there is evidence of student achievement in Eastern Highlands community schools being related to teacher quality, measured on a number of criteria (Weeks, 1985). Tuppen (1981) showed that for provincial high schools there was a greater success rate on the MYRE (Mid Year Rating Examination, now void) from schools where a high proportion of staff had undergone advanced training. Roberts (1985) carefully researched the difficulties in mathematics education in community schools in PNG. The general thrust of his study will be given by quoting from his abstract:

The findings showed that teachers and children were generally weak at mathematics with pupil mastery levels decreasing rapidly in the upper grades. Some teachers themselves know very little more mathematics than their pupils.

Further study of his results shows geometry to be an area of particular difficulty in mathematics. Teachers' scores showed an average of 78.1%, standard deviation 9.7 , with a range of teacher scores from 92.8% to 52.8%. For comparison, the pupils' overall mean was 47.9%. Roberts points out that the gap between pupils and teachers is 35.7% in Grade 2, but only 17.2% in Grade 6 . He considers that the size of the gap in knowledge between pupils and teachers in Grade 6 is too narrow for confidence that the quality of teaching is adequate at this level.

The SISS Study

The first IEA Science Study (SISS) took place between 1970 and 1973. PNG did not take part in it. The survey aimed to look at science education as a whole in the nineteen participating countries, and to measure levels of achievement by pupils at four different ages in these countries (Comber and Keeves, 1973), (Rosier, 1973). Planning the second IEA Science Study (SISS) started in 1980 (Keeves and Rosier, 1981) and has involved more than twenty six countries, including PNG. A PNG National Study Committee was formed (Research Co-ordinator, Michael Wilson) to ensure the smooth administration of the international tests, and also to see that other tests were designed to obtain any additional information required for purposes specific to PNG (Wilson, 1982). Population 3, who were 16 year olds in the international study and Grade 12 students in PNG, were tested in 1983 (Wilson, 1986a). Population 2, who were 14 year olds in the study as a whole and Grade 10 students in PNG, were tested in September 1984. (Some information on the results of these tests is being now produced in mimeographed form.) Wilson (1986b) gives a full description of PNG SISS developments to date.

The PNG National Study Committee did however encourage some additional national research over and above the international plan for Grade 10 students (Wilson, 1984). Firstly it was agreed that the teachers who actually teach Grade 10 would be asked to answer the same questions as their students. Secondly, because the international tests contained comparatively few chemistry questions, an additional eight chemistry questions at Grade 10 level were added to the seventy international questions. It is these two local additions to the main international effort which will be discussed in this paper.

The SISS Instruments at Population 2 Level

The SISS Science Understanding tests were made up of five tests - 2M, 2A, 2B, 2C and 2D. The 2M test consisted of 30 questions, all of which were provided by the International Study. Test 2A, 2B, 2C and 2D contained 10 questions from the International Study and questions 11 and 12 in each paper were objective chemistry questions based on the Grade 10 chemistry unit called Chemical Technology, Unit 10.1. These eight additional questions had been chosen from 27 possible questions pretested by GTC preliminary year students. The questions were of middle level difficulty and covered different aspects of Unit 10.1. The tests are included as Appendix 1. Grade 10 students were asked to do Test 2 M and two of the other tests. The teachers were asked to answer all the questions in all five multiple choice tests. They were also asked to state how much stress they had placed on the content of each of the 78 questions on a three point scale called the Opportunity to Learn Index (OTL). It should be emphasised that there was no means of checking whether the teachers answered the questions with or without help, or did so hurriedly, painstakingly or not at all. Teachers were simply advised to fill in all their forms, 78 questions plus a lengthy teacher questionnaire, whilst their class was doing the tests and the student questionnaire. If there was more than one Grade 10 science teacher in the school, each teacher was expected to answer the questions and questionnaire.

Although 90 result sheets were received out of a possible 126 from 78 schools only 70 teachers completed all five tests (Two of these did not complete the ATL tests but these have been included). Of the sample, about 25% were female, 64% were national and about half had graduated from GTC. It should be noted, however, that all of the sample were Grade 10 teachers and wou1d therefore be expected to be the most experienced and capable teachers in provincial high schools. It should also be noted that the test is designed to be suitable in the main for 14 year old students in developed countries and was considered to be suitable for Grade 10 students in PNG, so experienced teachers at this level should not have much difficulty in scoring high marks.

Appendix 2 contains the raw results of five tests for the 70 Grade 10 teachers. Basic statistics far the tests are in Table 1 below. Table 2 is a correlation matrix showing the correlations between each of the five tests and the total.

Table 1. Means, Standard Deviations and Percentage Means for Each Test

Test	1	2	3	4	5	6
	Test 2M	Test 2A	Test 2B	Test 2C	Test 2D	Total
Mean	26.51	10.26	10.39	10.79	10.86	68.71
Standard Deviation Maximum Score	3.16	1.59	1.48	1.27	1.28	6.48
Mean as a Percentage	88.37%	85.50%	86.08%	89.92%	90.50%	88.09%

Table 2 Correlations between Test 2M, 2A, 2B, 2C, 2D and Total

		Test 2M	Test 2A	Test 2B	Test 2C	Test 2D	Total
Test	2M	1.000	0.437	0.345	0.345	0.497	0.847
Test	2 A	0.437	1.000	0.291	0.444	0.620	0.734
Test	2B	0.345	0.291	1.000	0.122	0.508	0.598
Test	2C	0.345	0.444	0.122	1.000	0.311	0.561
Test	2D	0.497	0.620	0.508	0.311	1.000	0.774
Total	0.847	0.734	0.598	0.561	0.774	1.000	

Table 1 indicates the high average scores obtained by the 70 teachers, all between 85% and 91%. Table 2 shows reasonably high correlations between the tests, indicating they are generally similar in nature.

Appendix 1 was treated in an arbitrary manner to split the teachers into five groups based on overall attainment. The teachers who made no errors were given the grade M (Master teachers). It was considered that up to one casual error per test might be made by a teacher who had a good grasp of science. Such teachers were called Grade A teachers. If up to two errors per test were made the teachers were categorised as Grade B teachers. Teachers with up to three errors per test were called Grade C teachers. Those with more than three errors per test were called Grade D teachers. There were 4 Grade M teachers, 20 Grade A teachers, 18 Grade B teachers, 15 Grade C teachers and 13 Grade D teachers. Since this is an arbitrary categorisation, it is a matter of judgment whether any particular group has an adequate subject knowledge. Such judgments can only be made by looking at the level of difficulty of the questions, in relation to what an experienced teacher needs to know in order to teach the syllabus satisfactorily. The judgment here will be made that there is little cause for concern about teachers in categories M, A or B , some cause for concern about teachers in category C and considerable worry about the ability of teachers in category D to cope with the syllabus.

Which Areas of Science caused most difficulty to teachers?

The seventy eight questions previously marked for each of the seventy teachers were re-marked so as to give results in the four separate sciences. The raw results can be seen in Appendices 3 and 4. Basic statistics for these tests can be found in Table 3. Correlations between the marks the teachers obtained for the four separate sciences and the total are shown in Table 4 below.

Table 3. Table of Basic Statistics for Tests in Separate Subjects for 70 Teachers

	Chemistry	Physics	Biology	Earth Science	Total
Mean	18.89	21.04	20.89	8.03	68.74
Standard Deviation	2.55	2.28	2.10	1.20	6.43
Maximum Score	22	24	23	9	78

Table 4. Tests in the Separate Sciences Correlation Matrix

		Chem Test	Phys Test	Biol Test	E. Sci Test	Total
Chem	Test	1.000	0.695	0.473	0.233	0.847
Phys	Test	0.695	1.000	0.538	0.248	0.857
Biol	Test	0.473	0.538	1.000	0.386	0.778
E.Sci	Test	0.233	0.248	0.386	1.000	0.503
Total		0.847	0.857	0.778	0.503	1.000

The eight additional chemistry questions set on Unit 10.1 have been included throughout. Numbers of questions in each subject were as follows: physics, 24; biology, 23; chemistry, 22; earth science,9. A brief glance at the correlations between the tests in the separate sciences indicates a generally high level of correlation, but with the earth science test not correlating well with the other areas. Because each test had different numbers of questions, means for each were calculated as percentages which may be found in Table 5. From the percentage means which are similar between tests chemistry can be seen as marginally the most difficult subject for teachers. It was thought that teachers who were less knowledgeable overall would find greatest difficulty with chemistry, so the percentage means of C and D grade teachers were calculated and may also be found in Table 5.

Table 5 Percentage Means of Tests in the Separate science for Various Groups of Teachers.

	Number	Chem Test	Physics Test	E. Science Test	Biology Test
All Teachers	70	85.85%	87.68%	89.20%	90.81%
Grade C and D Teachers	28	75.90%	79.60%	81.40%	82.90%
Grade D Teachers Only	13	69.58%	76.60%	77.78%	79.93%

It should be noticed that the order of difficulty is consistently chemistry, physics, earth science and biology, with biology causing least difficulty. Chemistry is the most difficult subject area for teachers in this test. Table 5 appears to support the suggestion made above that teachers with the least knowledge as a group will do worst in chemistry. Statistically the following result is obtained: in looking at the fraction chemistry marks/physics, biology, earth science marks for the 42 M , A and B teachers and comparing them with the fraction chemistry marks/physics, biology, earth science marks for the C and D teachers, it was found that the difference in the means was only significant at the 10% level. Thus the hypothesis that teachers with least knowledge as a group will do worst in chemistry cannot be sustained.

The separate science tests may be looked at in a different way to see how many Master teachers were produced in each area. A Master teacher is defined as one who scored full marks in a particular area. Ten teachers achieved mastery status in chemistry, eleven teachers in physics, seventeen in biology and twenty nine in earth science. Here again chemistry and physics seem to be the most difficult areas for teachers to master.

Which teachers had the most difficulty with the Tests?

In addition to the cognitive tests for teachers, there was also a questionnaire which asked for such information as sex, academic qualifications, nationality and length of experience, etc. from the teachers. Considerable future work will be required to correlate each of these and other results with the cognitive data.

However, the test results for the two largest groups in the sample, GTC diplomates and expatriate degree holders, will be looked at briefly. The results indicated that the overseas graduates averaged just below an A grade (about 6 errors), whilst the GTC diplomates averaged just above C grade (about 16 errors). The small sample of B.Ed. graduates from UPNG averaged just below a B grade (about 11 errors).

These results appear to be very much in agreement with the views of the Regional Secondary Inspectors quoted in Guthrie (1983), to the effect that GTC graduates lack subject knowledge. These results may well be in accord with earlier research on GTC students in mathematics (Allen, Thomas and Patu, 1975) where they state:

The most crucial part of the teacher training problem is that with such a poor standard of understanding the student is not equipped to improve his lot by self-study or in-service training.

However, as stated earlier, it remains a matter of judgment whether an overall average score of 75% for Grade D teachers on this test is success or failure. In terms of Master Teachers in any of the separate sciences for the GTC diplomate group, there were ten teachers who made no error in earth science, two who made no error in biology, one who made no errors in chemistry and none who made no errors in physics. The surprise is the number of teachers who have mastered questions in earth science, because Wilson (1985) found that teachers consider this an area of difficulty 'Very few teachers are secure in their understanding of Unit 10.4 (Geology)'.

Finally, no obvious relation between test scores and years of experience of GTC diplomates was found when simply considering the scores of those with more than five years experience compared with those with less than five years experience.

One major source of error has been the forms that were only partially completed. These have been excluded. But viewing a few of these papers, I have the impression that they would probably be among the lower scores. No conclusion can be drawn from this but the fear is that many of those who did not answer the tests at all, or answered incompletely, would have been amongst the low scores. If this were the case overall, science teaching in schools would be worse than the impression given in this paper.

Analysis of Chemistry Test Errors

Error analysis in tests can be a major source of understanding of the way in which the science teachers thought about the questions, so not only can the analysis be used to show which areas teachers are having difficulty with, but such analysis can also be used to find improved ways of teaching them in in-service. The full analysis included subject areas for each question stated. In all tests except one, a chemistry question is the most difficult question within that test. Conversely more biology questions were answered correctly by all teachers than any other subject, indicating that biology questions were found to be easier.

Teachers' views on Grade 9 and Grade 10 units indicate that they consider chemistry hard for their pupils, but strangely enough consider they have reasonable confidence in their own understanding of chemistry (Wilson, 1985).

As an example, some analysis will be carried out on a single question containing a basic generalisation in chemistry, in the context of similar questions from previous research which also tested this generalisation.

The most difficult question in Test 2M was Q18 which asks:
Two given elements combine to form a poisonous compound. Which of the following conclusions about the properties of these two elements can be drawn from this information?
A. Both elements are certainly poisonous.
B. At least one element is certainly poisonous.
C. One element is poisonous, the other is not.
D. Neither element is poisonous.
E. No conclusions can be made.

The generalisation which teachers or pupils need to know to answer the question is that 'The properties of a compound are different from those of its constituent elements'. A similar question was put to Grade 12 students in the SISS 3M test (Q4):

Two given elements combine to form a poisonous compound. Which of the following conclusions about the properties of these two elements can be drawn from this information?
A. Both elements are certainly poisonous.
B. At least one element is certainly poisonous.
C. One element is poisonous, the other is not.
D. Neither element is poisonous.
E. Neither element need be poisonous.

Strangely enough, sixteen years earlier, a question (Item 58) involving a similar principle was set by McKay (1968) to Grade 10 students in PNG and also to a group of Australian students. It was:

A scientist discovered a compound that had the following properties at normal room temperature and pressure: (i) it was a gas, (ii) it was heavier than air, (iii) it had a pungent odour, (iv) it was colourless. Which of the following assumptions was the scientist justified in making about the component elements that made up the compound he had discovered?
A. Each of the component elements must have had properties (i), (ii), (iii), (iv).
B. The component elements must have had properties (i), (ii), (iii), (iv) between them, but each of them need not have had all of these properties.
C. The newly discovered compound must be made up of four elements, each having one of the four properties listed.
D. None of the component elements need have any of the properties listed.

Boeha (1980) reset McKay's test to a group of remedial Unitech students as part of a study to find the problems of this group and then to help them overcome their problems. Fewer students got the correct answer to the McKay question in the 1968 test than would be expected by chance, and on this question the Australian pupils did better than the PNG pupils. In 1980, the Unitech scores on this same question were below half those expected by chance. Wilson (1986) records that scores were no better than chance on the question on this topic in the 1983 Grade 12 SISS tests. For the 1984 SISS Grade 10 test the question on this topic was one of the most difficult ones for teachers and pupils. Wilson (1986) suggests the language of the question may be the key to poor results, and indeed both McKay's 1968 question and the two SISS questions are unnecessarily convoluted. Wilson may well be correct but perhaps the alternative hypothesis that over nearly twenty years teachers have not made clear to their students the principle that the properties of compounds differ from those of their constituent elements at least bears consideration. If this is the case, it shows that a basic understanding of the meaning of chemical combination is absent from both pupils and teachers alike. This would be a sad state of affairs.

Conclusion or What To Do Now?

The results described in this paper should be considered as a start to the fuller and more detailed research necessary to be more confident of the conclusions. However, evidence has been produced here that the knowledge of some experienced science teachers is less than would be considered desirable, and that in terms of scientific knowledge Goroka diploma holders, whether experienced or more recent, have less knowledge as a group than other Grade 10 teachers. There is also evidence that chemistry is an area of difficulty, particularly for Goroka diploma holders. Finally, item analysis of SISS data may yield some inkling of specific problems which national teachers have in their own understanding and may eventually lead to appropriate remedies being found for these problems. Practically, several solutions have been tried for improving the quality of science teaching in PNG. Amongst these are the Subject Masters' Course (Palmer, 1984), the Major Science/ Minor Mathematics Course (Bunker and Palmer, 1984) (Bunker, 1984) and the Advanced Diploma Course for science teachers (Steward, 1985). It is perhaps too early to claim success for any of these solutions.

Acknowledgements

I would like to acknowledge considerable help from Dr Michael Wilson in providing new data from the SISS files. Data is being processed at the University of Newcastle, under the supervision of Professor M. W. Maddock, and I am also grateful for information received from this source. Thanks as well to Peter Wark of GTC for help with interpretation of some of the statistics. The views expressed in the paper, however are my own.

REFERENCES

ALLEN, A.L., THOMAS N. D. and PATU P. (1975). Abilities of Newly Trained Secondary Mathematics Teachers in Papua New Guinea, Papua New Guinea Journal of Education, Vol. 11, No. 1, pp. 1-7.

BANTOCK, G.H. (1969). Conflicts of Values in Teacher Education, Towards a Policy for the Education of Teachers, Colston Papers, No 20 in Taylor, W. (Ed), Butterworths, London, U.K. pp. 122-134.

BENNETT, N. et al (1976). Teaching Styles and Pupil Progress. London: Open Books.
BOEHA, B. B. (1980) The Learning of Physics at the Papua New Guinea University of Technology, Unpublished M.Ed. Thesis, Monash University, Australia.

BRUNING, F. (1986). An Education System Under Siege, Maclean's, April 21, p. 11.
BUCHMAN, M. (1974). The Flight away from Content in Teacher Education and Teaching, Journal of Curriculum Studies, Vol. 14, No .1, pp. 61-68.

BUNKER, C. A. (1984). The Fall and Rise of Specialised Science Courses at Goroka, The Role of Science and Technology in the Development of Papua New Guinea: The Policy Dimensions, Vol. 2. Waigani Seminar 1984, pp. 83-96.

BUNKER, C. A. and PALMER, W. P. (1984). The Implementation of a Programme for the Improvement of the Academic Knowledge of New Teachers of Science, International Newsletter of Chemical Education, No. 21, June, pp. 18-20.

COMBER, L. C. and KEEVES, J. P, (1973). Science Education in Nineteen Countries, Halstead Press / J.Wiley.
GTC (1986). Aim High, Come to Goroka Teachers College, Post Courier,_Thursday, 7 August, p. 36.

GUTHRIE, G. (1983). An Evaluation of the Secondary Teacher Training System, Educational Research Unit, Report No 42. Port Moresby: UPNG.

HUSEN, T, et al (1978). Teacher Training and Student Achievement in Less Developed Countries, World Bank Staff Working Paper No 310, The World Bank, Washington, D.C.

INOUE, H. (1975). (Quoted V. Rust) Education in Japan, Journal for Overseas, Vol 8, pp. 69-83.
JENCKS, C. (1972). Inequality, Harmondsworth: Penguin.
KEEVES, J. P. and ROSIER, M. J. (1981). Guidelines for the Second IEA Science Study. Hawthorn: Australian Council for Educational Research.

MACKAY, L. D. (1968). An Evaluation of Some Aspects of Science Curricula in Territory of Papua and New Guinea Secondary Schools, Unpublished, printed for Department of Education, PNG.

NISBET, J. D. (1954). A Twenty Year Follow-up of Intelligence Test Scores, Advancement of Science, Vol. 41, pp 13-16.

PALMER, W. P. (1984). The Progress of Five Attempts to Improve the Quality of Secondary Teaching in Papua New Guinea, Paper at 31st ICET World Assembly, Innovations in Teacher Education: The Pursuit of Excellence, Bangkok, Thailand, July 23-27.

PALMER, W. P. (1985). Chemistry in the Provincial High School Curriculum in Papua New Guinea: A Personal View, Science in New Guinea, Vol. 11, No 3, pp 173-178.

PENNER, K. P. and KOLASA, K. M. (1983). Secondary Teachers' Nutrition Knowledge, Attitudes and Practices, Journal of Nutrition Education, Vol. 15, No. 4, pp. 141-145.

PHILLIPS, D. (1986). The Notion of Excellence, Keynote Address, South Pacific Association for Teacher Education, 16th Annual Conference, 13-17 July, Fremantle, Australia, (Available as audio cassette from Quik Copy, 21 Lord Street, East Perth)

ROBERTS, R.E. (1985) Primary Mathematics Teaching: Implications for Inservice Training, Educational Research Unit Report No 53. Waigani: UPNG.

ROSIER, M. J. (1973). Science Achievement in Australian Schools, ACER Research Series No 92. Hawthorn: ACER.
ROWSEY, R. W. et al (1978). A Study of Selected Science and Mathematics Teacher Education Majors to Assess Knowledge of Metric Measures and Their Applications, Journal of Research in Science Teaching, Vol. 15, No. 1, pp. 85-89.

RUST, V. (1985). Academic Ability Among Teachers: The Unusual Case of Norway, Teaching and Teacher Education, Vol. 1, No 4, pp. 263-271.

RUTTER, M. et al (1979). Fifteen Thousand Hours. London: Hawthorn.

SCHULMAN, L. S. (1974). The Psychology of School Subjects: A Premature Obituary? Journal of Research in Science Teaching, Vol. 11, No. 4, p. 325.

STEWARD, J. W. (1985). The Advanced Diploma in Teaching (Science): Problems and Potentialities, Chemistry for Resource Development. Lae: University of Technology.

TUPPEN, C. J. S. (1981). School and Student Differences: Grade Ten Examination and Assessment Results, Educational Research Unit, Report No 39. Port Moresby: UPNG.

WALSH, M. J. (1984). Why So Little Content in Secondary Science Courses Today? The Australian Science Teachers Journal, Vol. 30, No. 1, May, pp 38-42.

WEAVER, W. T. (1978) (Quoted V. Rust) Educators in Supply and Demand: Effect on Quality, School Review, Vol. 86, pp. 522-593.

WEEKS, S. G. (1985). Community School Expansion in Eastern Highland Province, Special Report, Educational Research Unit. Port Moresby: UPNG.

WILSON, M. (1982). International Research in Science Education, Directions for Education Research, G. Guthrie and T. N. Martin (Eds). Port Moresby: UPNG.

WILSON, M. (1984). The Second IEA Science Study in Papua New Guinea. The Role of Science and Technology in the Development of Papua New Guinea: The Policy Dimensions. J. R. Morton (Ed). Waigani: UPNG.

WILSON, M. (1985). Population II, School Report No 1: Teachers' Views on Grade 9 and Grade 10 Science Units, Mimeo, UPNG, July.

WILSON, M. (1986a). SISS - PNG: Grade 12 Cognitive Tests, Mimeograph, 7 March.
WILSON, M. (1986b). The Second International Science Study in PNG, Papua New Guinea Journal of Education, Vol. 22, No. 1, pp. 59-74.

WILSON, M. and DEUTROM, B. (1984). Science for All in Papua New Guinea, Third International Symposium on World Trends in Science and Technology Education Proceedings, Vol. 2, 10-12 December, Mount Gravatt, Queensland.

internattonal sctence stuor

The Sun is the only body in our solar system that gives off
tot of tight and heat. Why can we see the Moont
A it is roflecting light from the Sun.
3 It is without an atmosphere.
it is a star.
it is the bizgest object in the solar systen.
E It is nearer tho Earth than the Sun.

2 About how long would it take a rocket ship to reach the moont
A two hours
${ }^{3}$ several hours
a few days
A light-year
several years the cracks of the bark. Mhich drawing shows the kind of boak this
bird hadt bird had?

The next two questions refer to the following table which shows some emperature readings made at different times on three days.

	6 2.m.	98.8.	12 noon	3 p.a.	$6 \mathrm{p} . \mathrm{m}$.
Monday	$15^{\circ} \mathrm{C}$	${ }_{17}{ }^{\circ} \mathrm{C}$	$20^{\circ} \mathrm{C}$	$21^{\circ} \mathrm{C}$	$19^{\circ} \mathrm{C}$
Tuesday	$15{ }^{\circ} \mathrm{C}$	$15^{\circ} \mathrm{C}$	$15{ }^{\circ} \mathrm{C}$	$10^{\circ} \mathrm{C}$	$9{ }^{\circ} \mathrm{C}$
Wednesday	$8^{\circ} \mathrm{C}$	$10^{\circ} \mathrm{C}$	$14^{\circ} \mathrm{C}$	$14^{\circ} \mathrm{C}$	$13^{\circ} \mathrm{C}$

mich of the following shous the temporature se o A. .a. on Modnesday

A The particular asarine shellfish can live in the ses or on land. Marine forses once had orzans that enabled thees to breathe
atmospheric air. The roeks in which the fossils were found were formed under
the ses.
Marine foras, in certain cases, migrate on to the land.
E Marine forms have evolved from land foras.
8 The diagram below shows an oxasple of interdependence among aquatic organisas. During the day the organisms oither use up or zive off
(a) or (b) as shown by the arrows.

6 The disgram below show, a mountain. The vind alrwetion and mountain ai , indicated. At different holights on both aldes of the

10 This question refers to the following diagran of apparatus used to shom

Part 1 contains a substance wich resoves carbon dioxide fros the air passing through it. Parts 2 and 4 both contring it.
of the following kinds of containers for the aniasal which one would ive the quickest result
a small, container
a large container
container in bright light
container covered with a dark cloth
container in which the air is kept moist by means of à conctiner in
mich of the cells shom below would commonly be found in the husan Mich of the ce

0

E

12 Animals take in oxyzen and give out carbon dioxide. Ordinary air contains very littie carbon fioxide.

Wich of the following can be seasured with the above apparatus?
A The rate of movenent of the animal,
s The amount of heat produced by the animal,
C The rate of respiration of the aniasal.
The effect of carbon dioxide on the animal
E The amount of carbon dioxide absorbed.by the anizal.
13 Which of the foilowing statesents is true about seeds?
A Every plant produces seeds.
B All fruits contain a large number of seeds.
All seeds are good to eat.
Every seed contains a young plant, stored food and a seed coat. The food stored in seeds is aiways in the cotyledon.

4 girl wanted to learn which of three types of soil (elay, sand and loan)
would be best for groving besns. She found three flover pots and tilled each with a different type of soil. She then planted the same number of beans in azeh. ss shown in the draing. She placed thee side by sid
near a viadou and geve oach pot the same smount of vater.

clay

sand

My was the experiment not a good one to find out about the soilt
A The plants in one pot got more sunlight than the plants in the other pots.
3 The amount of soil in each pot was not the same
C One pot should have been placed in the dark.
0 oifforent amounts of water should have been used.
E The plants would get too hot near the window.

A The cold changes the water of the ailk into ice.
3 The cold separates the crean.
c The cold slows down the action of bacteria
o The cold keeps flies sway.
E The cold causes a skin to form on the surface of the silk
i6 The aside insects in a population are treated to prevent spera production. ould this reduce enis insoct population?
A. Mo, because the females would still lay egis
s No, because the insects would still mate.
No, because it would not change the offopring mutation rate.
0 Yes, because it would sharply decrease the reproduction rate
E Yes, because the males would die.

17 When 2 (grass) of ziac and $1, z$ of sulphur are heated together

A zine sulphide containing approximatoly twice as much sulphur zine sulph
is forsed

- Approxisately 1 ig of sulphur will be left over.

C Approxiaately $1 t$ of zine will be left over.
Approxiantely $1 t$ of each will be left over.
No reaction will occur.

21 How long ts the block of wood show in the diagran?

18 Two given elements combinie to fora a poisonous compound. Which of the following conclusions about the propertios of these two elements can bo
drawn from this inforastion?
both olements are certainly poisonous.
At least one element is certainly poisonous.
one element is poisonous, the other is not.
Neither element is poisonous.
Yo oosaluelone cean be mede.

19 Paint applied to an iron surface prevents the lron froe rusting. Mich one of the following provides the bost reason?
it prevents nitrogen from cosing in contact with the itron
It rescets chemically with the fron.
it prevents carbon dioxide from coming in contact with the iron
tt askes the surface of the iron smoother.
It prevents oxysen and moisture from coming in contact with
the iron.
Mich of the following particies are gained, lost or shared during cheaical changes!

A electrons furthest from the nucteus of the stoo
B electrons closest to the nucleus of the atos
c electrons from the nucleus of the atom
O protons from the nueleus of the atou
ε neutrons fron the nucleus of the atom

A 10 cm
B 20 cm
c $\quad 25 \mathrm{~cm}$

- 30 cm

8 35 cm

32 Mary and Jane asch bought the same kind of rubber bell. Mary said My ball bouncess better than yours." Jane replied, "I'd tike to se
you that." Mat should Mary do?

A Drop both balls from the same height and notice which
bounces higher.
bouncos hizher.
3. Throw both balls against a wall and see how far each ball
c Drop the two balls from different heights and notice which
Orop the two balls from different heights and notice which
bounces higher.
Throw ethe balls down against the floor and see how high
they bounce. reel the balis by hand to find wich is the harder.

(8) (1)) (1)) (1)

What is the weight of the container full of hydrogen compared to the weight of the ovacuated container?
A
3
c the save
O greater or less depending on the volune of the gas in the greater or
container
E greater or less depending on the tesperature of the gas in the container.

24 The objects P, Q and R of veight is N (neveons), 20 N and 7 N , are hun vith a ilight thread as shown in the figure

Shat is the force in the thrend betveon P and at
A $42 \times$
3 35 N
c $\quad 27 \mathrm{~N}$
D 15 N
25 Using the apparatus show in the figure below, 100 g (grams) of water its temperatury read at intervais from thermometer 2 . At the same tise
 temperaturo read at interval's from themoneter 1 .

Which of the following traphs best represents the
tenperatures of the water in the two containers?

$\xrightarrow[\longrightarrow]{30}$

26 A set of bolls was asde by eutting four pieces of pipe of different lengths frow a long metal pipe and hanging thes as show in the picture
below. Which of the pipes gave the lovest note when struck with a haemer?

27 A cupful of water and a sinilar cupful of petrol were placed on a table near a window on a hot sunny day. A fer hours later it was onserved
that both the cups had less liquid in then but that there was less petrol left than vater. What does this experiment show?
A All liquids evaporate.
pecrol zets hotter than water.
Sose liquids evaporate faster than others.

Liquids vill only evaporate in sunshine.
Water zets hoter than petrol

23 A fiashifight holds two batteries. In order to sake it work, in which of the following ways must wo place the batteries?
A as in diagras x
3 as in diagraa L
as in diagran M
oither as in diagras L or in diagras M
none of these would do

k

In what order do the candle flazee go out?

international science stud

TEST 2A, PAGE :

1 Some seeds gerainate (start to grow) best in the dark, others in the light, while others gerninate equally well in the dark or the 11 ght . A giri wanted to find out by seans of an experiment to which group damp nexspaper and

A keep thea in a vara place in the dark.
keep some in the light and some others in the dark. keep then in a wara place in the light.
put some on dry newspaper and keep thea in the light. put sone on dry newspaper and keep then in the dark.

2 Flovers cannot usually produce seeds uniess
they are visited by insects.
they appear in the dry soason.
they are on plants growing in good soll.
they produce nectar.
sultable pollen is placed on their stigas.

3 The seiling of rehented food in shops is often discouragod and
sometimes prohibited by iav. which of the following is the aain reaso for this?

A Most people do not like it.
Valuable aineral salts are lost on reheating.
It is uneconomic to heat food twice.
Bacteria will sultipiy quickly on the warmed-up food.
Reheating causes a reduction in protein content.

A boy used a hand pump to put more air into a bicycle tyre. After a while it becones harder to use the purp why?

Air in the tyre pushes against the puap.
Air starts to leak out of the pump.
The pump gets too hot to hold.
The pump gets too sticky to push.
The tyre is bigger than the puap.

Three candies, which are exactiy the same, are placed in different boxes as shom in the diagraan. Each candie is iit at the sase tise.

Candle 1

Candle 2

6 The freezing point of a liquid is the temperature at which it freezes. The boiling point is the temperature at viich it boils.
Which one of the entries in the following table shows how the freeting, point and bolling point of sait water compare with those of pure water:

	Freesing point of salt water	Bolling point of salt vater
\wedge	lover than pure water	lover than pure water
3	lover than pure water	higher than pure vater
c	higher than pure vater	lower than pure water
0	hagher than pure water	higher than pure vater
£	same as pure water	same as pure water

10 A rod is pivoted at its centre. It is acted on by two forces. Each force has the same size, equal to 10 N (nevtons). In
Which case wili the rod turn)

110 N in mamal's milk and tiae taken for a newborn baby to double its
birth weight.

The crevs of two boats at sea can communicate with each other by thouting My is it iapossible for the crews of spaceships a similar distance apart

The tenperature is too low.
The sound is reflected.
The pressure is too high inside the spaceship.
The sound barrior has been broken.
The sound barriog is no air.

Wich picture shows the best way for the giri, who weighed 50 kz

pieture k
picture L
picture \times
pieture :
none of these The following result, are from expernents unich were nade to find how
long it took for newborn babies of different sammais to double in weigh

Nammal	Time in days to double the weight of the newborn baby	Percentage protein in the milk of the mother
human	180	1.6
horse	60	2.0
cou	47	3.5
piz	18	5.9
shep	${ }_{8}^{10}$	6.5
${ }_{\text {dog }}^{\text {rabit }}$	8	7.1 10.4

What do the results of these experiments suggest?

A The larger the mamal, the greator the protein concentration
in the milk.
B The salier the mamal, the greater the protein concentration
in the ailk.
c The greater the protein concentration in the manal's wilk
the slower the newborn baby will double its weight.
D The greater the protein concentration in the mammal's ailk
E There appears to be no relationship between protein concentration

11 Floatation is a process whereby
A A copper compound is spilit up into its component
B Two elements are combined to form a compound of copper.
Copper is separated from iron due to their different
densities.

- Conper

Copper ore is separated from iron due to their
different melting points.
E Copper ore is separated from erushod rock due to their

12 Dilute hydrochlorie acid is put on a piece of limestone and 5 bubbles of gas are avolved.
Which of the following gases is produced?

A chlorine

 Earth. Which of the following is , the best oxplanation of this?i His mass is less when the is on the moon.
B oxygen
The force of gravity is less on the Hoon than on the Earth.
Hydrogen
D Carbon dioxide
E Sulphur dioxide

interational science stuoy

TEST 28, PAGE :
1 Where is the energy for photosynthesis generaliy obtained:
$\begin{array}{ll}\text { A chlorophyll } \\ \text { B } & \text { chloroplasts } \\ \text { c } & \text { sunlight }\end{array}$
carbohydrat
carbon dioxide
A sixture of povdered fron and sulphur is heated. What will be forsed?
A a singlo element
3 two other elements

a solution

an alloy
E a compound

7 Under which of the following conditions does water ovaporate fastest ?
on a hot and dry day
on a hot and molse day
on a cold and dry day
on a cold and molst day
on a cala and solst day

That is the advantage of using a lever such as that shown in the diagras
to raise a veight x Instead of ilfting it directy?
\square
$\underset{\text { Pulcrua }}{\triangle}$
bess onerar is required
it is quicker
less force is needed
less sovesent is required
less work has to be done

A setal tray feels colder to touch than its plastic handle. Myyt
A Metal aluays has a lover temperature than plastic.
3 Metal radiates auch sore heat than plastic and so cools more quickly.
Metal conducts the heat away froa your hand better than
piastic. plastic.
0 Plastic is a bettor heat conductor than metal.
A smooth surface allows a closer contact than a rough one.

10 This question refers to the diagras below.

No more water vill zo into the bottle. Mhy?
Air pushes harder than the water.
Air is heavier than the water.
Air takes up space and sust get out to let the water in
The glass tube is too thin.
The mass of the water is greater than the nass, of the air
11 Which of the following is not a major use for copper?
A Coins
Radios
Car bodies
Computors

Metal alloys

12 In iron nail is dipped into a copper il nitrate soletion This deposit is:-

A nitrate
 brass
 copper
 iron

copper ore

3 The formula for the compound acetic acid (present in viagegar) is
CH_{3} cooh.
mat is the total number of atoms in one aolecuic of acetic acid?
c 3
$\begin{array}{ll}\text { D } & 6 \\ \text { E } & 8\end{array}$

The measuring cylinder contains a certain volume of water. The enlarged figure shows a view of the surface of the water as seen from the side.

INTERXATIONAL SCIENCE STUOY

TEST 2 C, PACE 1
Here are some possible reasons why ketties and cooking pots are ofton Here are some possible reasons why ketties and cook
made of copper. Mich one of the reasons is vrons!
a Copper is a bad conductor of heac.
Copper is a tough setal.
Copper can be polished to seike the pote shine.
Copper is easy to shape.
Copper does not dissoive in hot water.

2 A glass coated vith iron filings on the inside was ctasped vertically in a container of water. Als
a shore discance in the glass.

That is the best explanation of this?
A Water condenses inside the glass.
3 The iron gives off a gas which dissolves in the vater. The rust which replaces the iron takes up less space than the ruse the iron.
The iron reacts with orygen from the air inside the zlass. oxyzen froa inside the glass dissoives in the water.

3 A quantity of a substance 2 was heated in a special container. It consined with oxygen fron the sir
the following results were obtained.
 wat was the mass, of the oxyzen taken frow the air which combined with Mhat was the mass of the
the original substance?

A	02
B	0.2 z
c	0.32
0	0.52
E	1.02

Mich one of the folloving could you not plick up with a magrot?
A a maznotic coapass needie
a steel screw
an iron nail
a seving needie.
a seving need

Day		Mon	Tues	Med	Thurs	Fri	Sat	Sun
Time		noon						
Cloudiness	2				-	$0 \triangle 0$	\cdots	5
Temperature $\mid{ }^{\circ} \mathrm{C}$	$\begin{aligned} & 30^{\circ} \\ & 20^{\circ} \\ & 10^{\circ} \\ & \hline \end{aligned}$							
At sospheric pressure milli bars	$\begin{aligned} & 1040 \\ & 1020 \\ & 1000 \end{aligned}$							

From the information in the above diagran which one of the following
A The pressure was dropping, and the temperature was rising. The pressure was rising, and the temperature vas dropping. The pressure was dropping, and the temperature was dropping. The pressure was rising, and the temperature was rising. The pressure vas stable and the temperature vas stable.

Years ago farners found that corn plants grew better if decaying fish
vere buried nearby. Mhat did the decaying fish probably supply to the vere buried nearby. Mat did the decaying fish probably supply to the

$$
\begin{array}{ll}
\text { A } & \text { energy } \\
\text { b } & \text { ainerals } \\
\text { c } & \text { protein } \\
0 & \text { oxygen } \\
\text { E } & \text { vater }
\end{array}
$$

8 irirl had an idea that plants needed minerals fron the soil for healthy
growth. She placed a plant in the sun, as shown in the diagraa below. groveh. She placed a plant in the sun, as show in the diagraa below. Suntight

In order to check her idea she also needed to use another plant. In order to check her Idea she also need

9 What is the nain function of the kidneyst
A. to produce antibodies to help fight diseases
to digest food
to circulate the blood
to produce red blood ceils
to remove waste materials from the blood
Beiou is a diagram showing a food web. A food web shows what the animals eat. Some animils eat the plants. These are then eaten by ocher animals tho may be eaten by ochers The arrows to froo the food to the eater. For example:

If all the beans were dug up and destroyed, which animal would disappeart

A large spiders
B beetles
C aphids
D whiteflies
E small birds

11 In limestone caves stalactites and stalagmites are formed. In the diagram below which are the stalactites and which are the statagmites and what is the chat
substance from wich they are formed?

A X are stalactites and Y are stalagmites and they are made of gypsum
mare stalactites
made of gypsum
ralcium carbon Y of
Y are stalactites and X are stalagmites and the Y are made of calcium carbonate

- Both x and Y are stalagmites

12 Wood chips are heated in a test tube as shown in the diagrain below.

A student made the following observations.
(1) A solid product remains in A which weighs less than
(2) A solid product remains in A which weighs more than (1) the original weight of wood.
(3) The 1iquid product is collected in C .
(5) The qaseous product collected in C will burn

Which of the following statements is true

1 If you are facing North early in the soming, where is the Sun?
A to your left
to your rizht
behind you
in front of you
above you

The diagran shows five differgnt Celsius thermometers. The normal human body temperature is $37{ }^{\circ} \mathrm{C}$ ((desrees Celsivs). The body temperature be aost suited for accurately seasuring body temperature?
A thermosecer A
B thersoseter 3
C thernoseter C
0 thernoseter:
E thernoseter E

3 dish contains 28 (grams) of salt dissolved in 88 of water. The dish of salty water is placed in the Sun. ${ }^{5}{ }^{z}$ of the contents of the dish
evaporates into the atmosphere. What is in the remaining f of solution?
$A \quad 2 z$ of satt and $3 z$ of vater
3 wore than 1.5 g of sait and 3.5 g of water
$1 q$ of salt and $4 g$ of water
5 g of water only
less than 0.58 of salt and $4.5 z$ of water sagnesiua

4 The table below shows the melting point of five elements.

Element	Melting point
aluminium	$660^{\circ} \mathrm{C}$
magnesiun	$649^{\circ} \mathrm{C}$
lron	$1535^{\circ} \mathrm{C}$
lead	$327^{\circ} \mathrm{C}$
copper	$1085^{\circ} \mathrm{C}$

Samples of all these elements are heated in an oven to a teaperature of $1535{ }^{\circ} \mathrm{C}$. If the terperature of the oven is then lovered, which of
the samples would solidify first? A aluminiua C iron e copper A aluminiua o lead

The table below gives the name, chenical formula and boiling point for
some chemicails called alkanes.

Name	Forsula	Boiling point
sethane	CH_{4}	$-161{ }^{\circ} \mathrm{C}$
othane	$\mathrm{C}_{2} \mathrm{H}_{6}$	$-88{ }^{\circ} \mathrm{C}$
propane	$\mathrm{C}_{3} \mathrm{H}_{8}$	$-42{ }^{\circ} \mathrm{C}$
pentane	$\mathrm{C}_{5} \mathrm{H}_{12}$	$36{ }^{\circ} \mathrm{C}$
hexane	$\mathrm{C}_{6} \mathrm{H}_{14}$	$69{ }^{\circ} \mathrm{C}$
heptane	$\mathrm{C}_{7} \mathrm{H}_{16}$	$99^{\circ} \mathrm{C}$

sutane, which is an alkane, has a boiling point of $O^{\circ} \mathrm{C}$. What is its
chemical formula most likely to bo?
$\begin{array}{ll}A & \mathrm{C}_{8} \mathrm{H}_{7} \\ \mathrm{~B}_{3}\end{array}$
B $\mathrm{C}_{3} \mathrm{H}_{6}$
C $\quad \mathrm{C}_{3} \mathrm{H}_{3}$
D $\quad \mathrm{C}_{4} \mathrm{H}_{10}$
E $\quad \mathrm{C}_{3} \mathrm{H}_{12}$

6 The surface of the Earth is not level although weathering and erosion by wind and water have been occurring for millions of years. Which of
the following is the best explanation of this observacion?

The seateret explanation of this observation?
The sea level keeps changing.
Movements in the Earth's surface continue to occur,
There has not been enough time.
Tenperature differences at the Earth's surface are not
Large onough.
wind and water erosion are not strong enough

If equal amounts of the folloving foods are eaten, which one would
provide the most protein for the body?
aveot potatoes
banamas
rico
rice
bread
bread
chicken

8 What is the main way that sweating helps your body?
A It cools your body.
${ }^{3}$ It keeps your skin moist.
It keeps you from catching cold.
It zets rid of the sait in your body. It gets rid of excess water in your body.

9 The blood has many functions in the human body. which one o the following is not a function of the blood?
to digest food
to protect against disease
to carry food to the cells
to carry waste material away from the cells
to carry oxygen to different parts of the body
10 Why are green plants important to animals?
A Green plants consume both food and oxygen. Green plants consume food and give off oxygen. Green plants consume food and give off carbon dioxide.
Green plants produce food and give off oxygen.
E Gzeen plants produce food and give off carbon dioxide.

11 A 2 toea coin is put into some concentrated nitric acid in a 50 ml beaker. after a few minutes the following observations
are made about,
(1) the colour of the gas evolved
(ii) the colour of the solution

Which of the following observations are all correct?
A The gas is colourless; the liquid is brown
B The gas is brown; the liquid is colourless
C The gas is brown; the liquid is blue
D The gas is colurless; the liquid is shiny
12 When we say that a heavy oll had been "cracked" what do we
mean? A Too ofl molecules have combined to form a larger
a The oll has melted to form a thick liquid A large oil molecule has been split into simpler
molecules. The oll has been split by a physical change
E None of the above.

	ALL CORRECT	78 MARKS	MASTER SCIENCE TEACHER	M
	UP TO 5 ERRORS	73 TO 77 MARKS	SCIENCE TEACHER GRADE	A
S.I.S.S. TESIS	UP TO 10 ERRORS	68 TO 72 MARKS	SCIENCE TEACHER GRADE	B
$10.6 .86 ~$	UP TO 15 ERRORS	63 TO 67 MARKS	SCIENCE TEACHER GRADE	C
DAta held for each variable. MORE THAN 15 ERRORS	BELON 63 MARKS	SCIENCE TEACHER GRADE	D	

TEACHER	TEST 24	TEST 24	TEST 2B	TFST 20	TEST 2D	TOTM	CRADEE.	TEACHEn		
T1	25	7	9	9	8	58	D	T1		
T2	29	12	10	11	11	73	A	12		
T3	29	9	12	11	11	72	B	T3		
T4	29	11	12	11	11	74	A	T4		
16	27	12	9	11	12	71	8	T6		
T7	29	11	10	II	11	72	B	T7		
18	26	12	7	12	12	69	B	18		
T10	25	12	11	9	11	68	B	T10		
T11	30	11	11	11	12	75	A	T11		
T12	25	5	10	11	9	60	D	T12		
T14	30	12	12	12	12	78	M	T14		
T15	29	12	12	12	12	77	A	T15		
T16	29	9	10	8	11	67	c	T16		
177	29	12	12	12	10	75	H	T17		
T78	24	9	11	11	10	65	C	T18		
T19	29	12	9	12	12	74	A	T19		
T22	21	8	11	12	11	63	C	T22		
T23	26	9	7	11	8	61	D	T23		
T24	25	9	7	11	8	61	D	T24		
T25	25	11	10	11	10	67	C	T25		
125	30	12	12	11	12	17	A	T26		
T28	26	7	8	10	8	59	D	T28		
T29	22	10	12	7	11	62	0	T29		
T30	30	11	12	11	12	76	A	T30		
T31	24	9	11	11	11	66	C	T31		
132	22	9	12	9	11	63	C	T32		
T33	29	12	11	12	12	76	H	T33		
T35	25	8	9	10	10	62	D	T35		
T38	26	10	10	11	11	68	B	T38		
T39	25	10	12	9	12	68	B	739		
T 40	29	11	11	10	12.	73	A	T 40		
T41	21	6	11	10	9	57	0	T41		
T42	24	9	10	10	10	63	c	T42		
T43	27	10	9	9	10	65	C	T43		
T44	30	12	12	12	12	78	M	T44		
T45	28	11	9	12	12	72	B	T45		
T46	27	11	8	12	12	70	13	T46		
T48	27	11	9	12	12	71	13	T48		
TSO	28	11	9	12	12	72	B	TSO		
T51	23	10	11	9	12	65	C	TS1		
T52	29	12	12	12	12	77	A	T52		
T53	22	10	9	11	9	61	0	T53		
TS4	27	11	12	9	10	69	13	TS4		
T55	30	12	12	12	12	78	M	T55		
T56	27	9	10	11	10	67	C	T56		
T58	24	12	9	11	9	65	C	T58		
T59	26	11	11	11	12	71	B	T59		
T61	12	11	9	12	10	54	D	T61		
T62	27	10	11	12	9	69	13	T62		
T63	23	9	11	9	11	63	C	T63		
164	30	12	12	12	12	78	M	T64		
T65	26	8	11	9	11	65	C	T65		
767	30	12	11	12	12	77	A	T67		
768	29	11	12	12	12	76	A	768		
769	26	11	10	9	12	68	13	T69		
170	29	10	10	12	12	73	A	T70		
771	27	10	10	12	11	70	B	771		
T72	29	11	12	12	12	76	A	T72		
173	23	8	7	8	8	54	D	173		
774	27	11	11	12	10	71	B	174		
775	28	12 !	12	12	12	76		T75	4	MASTER
T76	28	11	12	12	11	74	A	776	20	
T77	23	9	8	9	9	58	D	177	20	GRADE
T78	30	9	11	12	11	73	${ }^{\text {a }}$	T78	18	Grade b
779	26	9	9	9	10	63	C	779	15	GRADE C
180	27 29	9	9	10	12	74		180	13	GRade D
181	29	11	11	11	12	74	A	181	13	Grade d
182	29	11	11	, 11	12	74	A	182	.	
187	28	11	10	10	11	0	13	187		
T89	20	10	8	11	9	8	$1)$	789		

APPENDIX 3

tests in the separate sciences 20.08.86

Data held for each variable.

	CHEM TST	PHYS TST	BIOL TST	E.SC TST	TOTAL
T1	15	16	20	8	58
T2	21	22	21	9	73
T3	20	22	21	9	72
T4	20	24	22	8	74
T6	22	21	20	8	71
T7	20	21	22	9	72
T8	19	18	23	9	69
T10	19	21	20	8	68
T11	22	23	21	9	75
T12	16	20	19	7	60
T14	22	24	23	9	78
T15	21	24	23	8	77
T16	17	22	21	8	67
T17	21	24	23	7	75
T18	18	20	18	9	65
T19	20	23	22	9	74
T22	20	16	20	7	63
T23	14	17	21	9	61
T24	14	17	21	9	61
T25	19	20	22	6	67
T26	21	24	23	9	77
T28	12	18	20	9	59
T29	15	20	21	6	62
T30	21	24	23	8	76
T31	19	22	18	7	66
T32	16	17	22	8	63
T33	22	23	23	8	76
T35	19	21	18	4	62
T38	17	20	22	9	68
T39	17	21	23	7	68
T40	21	22	22	8	73
T41	13	18	18	8	57
T42	14	21	21	7	63
T43	17	18	21	9	65
T44	22	24	23	9	78
T45	20	21	22	9	72
T46	20	19	22	9	70
T48	20	21	21	9	71
T50	21	22	22	8	72
T51	20	19	21	5	65
T52	22	23	23	9	77
T53	17	20	15	9	61
T54	18	22	21	8	69
T55	22	24	23	9	78
T56	19	21	19	8	67
T58	20	21	16	8	65
T59	19	22	21	. 9	71
T61	17	17	15	5	54
T62	17	22	22	8	69
T63	19	19	17	8	63
T64	22	24	23	9	78
T65	19	19	19	8	65
T67	22	23	23	9	77
T68	22	23	23	8	76
T69	20	22	22	7	68
T70	19	22	23	9	73
T71	18	22	21	9	70
T72	22	23	23	8	76
T73	15	16	16	7	54
T74	20	21	22	8	71
T75	21	24	23	8	76
T76	20	24	21	9	74
T77	17	18	17	6	58
T78	20	23	22	8	73
T79	15	19	21	8	63
T80	17	22	19	9	67
T81	20	23	22	9	74
T82	21	22	22	9	74
T87	20	21	21	8	70
T89	15	21	18	4	58

TEST 2M

QUESTION NUMBER	TOPIC	DISTRACTORS					No ATTEMPT	TOTAL ERRORS
		A	B	C	D	E		
1	E	(70)	-	-	-	-	-	0
2	E	-	7	(60)	1	2	2	10
3	B	3	(55)	2	-	9	1	15
4	E	(68)	1	-	1	-	-	2
5	E	1	3	5	(60)	1	-	10
6	E	(58)	1	1	4	6	-	12
7	E	1	1	-	(67)	1	-	3
8	B	(67)	2	-	1	-	-	3
9	B	2	-	2	(66)	-	-	4
10	B	(63)	2	1	2	1	1	7
11	B	(63)	-	1	5	-	1	7
12	B	1	3	(58)	8	1	-	12
13	B	1	2	-	(53)	13	1	17
14	B	-	(66)	2	2	-	-	4
15	B	-	-	(69)	1	-	-	1
16	B	2	-	-	(67)	-	1	3
17	C	5	(60)	1	2	1	1	10
18	c	5	12	6	5	(42)	-	28
19	c	1	1	-	-	(68)	-	2
20	c	(63)	3	4	-	-	-	7
21	P	1	-	(66)	-	3	-	4
22	P	(56)	1.	1	1	1	-	4
23	P	10	(51)	3	4	-	2	19
24	P	6	10	(48)	4	-	2	22
25	P	7	(58)	3	-	-	2	12
26	P	(65)	5	-	-	-	-	5
27	P	1	1	(68)	-	-	-	2
28	P	(69)	-	1	-	-	-	1
29	p	3	-	2	(64)	1	6	6
30	P	1	1	-	(68)	-	-	2

TEST 2A

QUESTION NUMBER	TOPIC	DISTRACTORS				NO ATTEMPT	TOTAL ERRORS	
		B	C	D	E			
1	B	3	(67)	-	-	-	-	3
2	B	2	-	2	1	(85)	-	5
3	B	-	9	2	(53)	6	-	17
4	P	(67)	-	1	-	1	1	3
5	C	1	(68)	-	-	1	-	2
6	C	11	(34)	14	5	5	1	36
7	P	-	2	6	(62)	-	-	8
8	C	-	10	4	(56)	-	-	14
9	P	-	-	-	-	(70)	-	0
10	P	6	5	4	3	(52)	-	18
11	C	1	-	4	-	(65)	1	5
12	C	-	-	4	(65)	1	-	5

TEST 2 2								
1	B	2	1	(67)	-	-	-	3
2	B	-	5	6	-	(57)	2	13
3	C	-	1	1	-	(68)	-	2
4	P	-	1	-	(68)	1	-	2
5	P	2	62	-	4	2	-	8
6	C	1	-	-	-	(69)	-	1
7	P	(67)	1	2	-	-	-	3
8	P	6	1	(51)	1	10	1	19
9	P	1	23	(41)	-	2	3	29
10	P	7	-	(61)	-	2	-	9
11	C	3	5	(57)	1	4	-	13
12	C	6	-	(56)	-	5	3	14

TEST 2C

OUESTION NUMBER	TOPIC	DISTRACTORS				NO ATTEMPT	TOTAL ERRORS	
		B	C	D	E		13	
1	C	(57)	1	1	6	4	1	1
2	C	1	2	1	(64)	1	1	6
3	C	-	(63)	6	-	1	-	7
4	P	4	2	1	1	(61)	1	9
5	P	1	(67)	2	-	-	-	3
6	E	3	9	(58)	-	-	-	12
7	B	1	(62)	6	1	-	-	8
8	B	9	-	3	(57)	1	-	13
9	B	-	-	-	-	(70)	-	0
10	B	-	(69)	1	-	-	-	1
11	C	1	1	(64)	3	-	1	6
12	C	3	1	2	4	(60)	-	10

TEST 2D								
1	C	5	(63)	1	1	-	-	7
2	P	(57)	2	-	4	7	-	13
3	C	(63)	4	3	-	-	-	7
4	C	-	1	(57)	12	1	-	13
5	C	1	2	2	(84)	1	-	6
6	E	1	(58)	2	1	7	1	12
7	B	-	-	-	-	(70)	-	0
8	B	(63)	1	-	1	4	1	7
9	B	(68)	1	-	-	-	1	2
10	B	-	-	1	(68)	1	-	2
11	C	3	1	(64)	1	-	1	6
12	C	-	2	(65)	1	1	1	5

NB: In the tables above :-

1. The distractors circled represent the correct answers
2. E stands for Earth Science Questions
3. P stands for Physcis Questions
4. C stands for Chemistry Questions
5. B stands for Biology Questions
